
NASA-TM-I12062

The Computation of _ to 29,360,000 Decimal Digits

Using Borweins' Quartically Convergent Algorithm

David H. Bailey

April 21, 1987

RNR-87-002

Abstract

In a recent work [6], Borwein and Borwein derived a class of algorithms based on the

theory of complete elliptic integrals that yield very rapidly convergent approximations to

elementary constants. The author has implemented Borweins' quartically convergent al-

gorithm for l/r, using a prime modulus transform multi-precision technique, to compute

over 29,360,000 digits of the decimal expansion of r. The result was checked by using a

different algorithm, also due to the Borweins, that converges quadratically to r. These

computations were performed as a system test of the Cray-2 operated by the Numerical

Aerodynamic Simulation (NAS) Program at NASA Ames Research Center. The calcula-

tions were made possible by the very large main memory of the Cray-2.

Until recently the largest computation of the decimal expansion of r was due to Kanada

and Tamura [12] of the University of Tokyo. In 1983 they computed approximately 16

million digits on a Hitachi S-810 computer. Late in 1985 Gosper [9] reported computing

17 million digits using a Symbolics workstation. Since the computation described in this

paper was performed, Kanada has reported extending the computation of r to over 134

million digits (January 1987).

This paper describes the algorithms and techniques used in the author's computation,

both for converging to 7r and for performing the required multi-precision arithmetic. The

results of statistical analyses of the computed decimal expansion are also included.

The author is with the NAS Systems Division at NASA Ames Research Center, Moffett

Field, CA 94035.

1980 Mathematics Subject Classification: 11-04, 62-04.

1. Introduction

The computation of the numerical value of the constant 7r has been pursued for centuries

for a variety of reasons, both practical and theoretical. Certainly a value of _" correct to 10

decimal places is sufficient for most "practical" applications. Occasionally there is a need

for doubl-_-precision or even multi-precision computations involving 7r and other elementary

constants and functions in order to compensate for unusually severe numerical difFiculties

in an extended computation. However, the author is not aware of even a single case of

a "practical" scientific computation that requires the value of lr to more than about 100

decimal places.

Beyond immediate practicality, the decimal expansion of lr has been of interest to

mathematicians, who have still not been able to resolve the question of whether the digits

in the expansion of lr are "random". In particular, it is widely suspected that the decimal

expansions of _r, e, v/2, _/_-_, and a host of related mathematical constants all have

the property that the limiting frequency of any digit is one tenth, and that the limiting

frequency of any n-long string of digits is 10-". Such a guaranteed property could, for

instance, be the basis of a reliable pseudo-random number generator. Unfortunately, this

assertion has not been proven in even one instance. Thus there is a continuing interest in

performing statistical analyses on the decimal expansions of these numbers to see if there

is any irregularity that would suggest this assertion is false.

In recent years, the computation of the expansion of _" has assumed the role as a

standard test of computer integrity. If even one error occurs in the computation, then

the result will almost certainly be completely in error after an initial correct section. On

the other hand, if the result of the computation of Ir to even 100,000 decimal places is

correct, then the computer has performed billions of operations without error. For this

reason, programs that compute the decimal expansion of 7r are frequently used by both

manufacturers and purchasers of new computer equipment to certify system reliability.

2. History

The first serious attempt to calculate an accurate value for the constant z" was made

by Archimedes, who approximated 7r by computing the areas of equilateral polygons with

increasing numbers of sides. More recently, infinite series have been used. In 1671 Gregory

discovered the arctangent series

3:3 3:5 X 7

tan-l(z) = z--_-+ 5 7 +''"

This discovery led to a number of rapidly convergent algorithms. In 1706 Machin used

Gregory's series coupled with the identity

= 16tan-l(1/5) - 4tan-l(1/239)

to compute 100 digits of a'.

In the nearly 300 years since that time, most computations of the value of _', even those

performed by computer, have employed some variation of this technique. For instance, a

series based on the identity

7r = 24tan-1(i/8) + 8tan-1(i/57) +4tan-1(I/239)

was used in a computation of 7r to 100,000 decimal digits using an IBM 7090 in 1961

[15]. Readers interested in the history of the computation a" are'referred to Beckmann's

entertaining book on the subject [2].

3. New Algorithms for lr

Only very recently have algorithms been discovered that are fundamentally faster than

the above techniques. In 1976 Brent [7] and Salamin [14] independently discovered an

approximation algorithm based on elliptic integrals that yields quadratic convergence to a'.

With all of the previous techniques, the number of correct digits increases only linearly with

the number of iterations performed. With this new algorithm, each additional iteration of

the algorithm approximately doubles the number of correct digits. Kanada and Tamura

employed this algorithm in 1983 to compute a" to over 16 million decimal digits.

More recently, J. M. Borwein and P. B. Borwein [4] discovered another quadratically

convergent algorithm for 7r, together with similar algorithms for fast computation of all

the elementary functions. Their quadratically convergent algorithm for _" can be stated as

follows: Let a0 = v/2, b0 = 0, p0 = 2 + v/2. Iterate

lldg)
a_+ 1 =

2

v/_(l + b_)
bl,+, -

ak + bk

p_bk+l(1 + at,+1)
Pk+l =

1 + b_+l

Then pk converges quadratically to _': successive iterations of this algorithm yield 3, 8,

19, 40, 83, 170, 345, 694, 1392, and 2788 correct digits of the expansion of ,,'. However, it

should be noted that this algorithm is not self-correcting for numerical errors, so that all

iterations must be performed to full precision. In other words, in a computation of ,r to

2788 decimal digits using the above algorithm, each of the ten iterations must be performed

with more than 2788 digits of precision.

Most recently the Borweins [6] have discovered a general technique for obtaining even

higher order convergent algorithms for certain elementary constants. Their quartically

convergent algorithm for l/a" can be stated as follows: Let a0 = 6 - 4v_ and Y0 = v/_ - 1.

Iterate

I-(I- y_,),/4
Yk+l =

I+ (I-

Then ah converges quartically to 1/_r: each successive iteration approximately quadruples

the number of correct digits in the result. As in the previous case, each iteration must be

performed to at least the level of precision desired for the final result.

4. Multi-Precision Arithmetic Techniques

A key element of a very high precision computation of this sort is a set of high-

performance routines for performing multi-precision arithmetic. A naive approach to multi-

precision computation would require a prohibitive amount of processing time and would, as

a result, sharply increase the probability that an undetected hardware error would occur,

rendering the result invalid. In addition to employing advanced algorithms for such key

operations as multi-precision multiplication, it is imperative that these algorithms be im-

plemented in a style that is conducive for high-speed computation on the computer being

used.

The computer used for these computations is the Cray-2 at the NASA Ames Research

Center. This computation was performed to test the integrity of the Cray-2 hardware,

as well as the Fortran compiler and the operating system. The Cray-2 is particularly

well suited for this computation because of its very large main memory, which holds 22s =

268,435,456 words (one word is 64 bits of data). With this huge capacity, all data for these

computations can be contained entirely within main memory, insuring ease of programming

and fast execution.

No attempt was made to employ more than one of the four central processing units in

the Cray-2. Thus, at the same time these calculations were being performed, the computer

was executing other jobs on the other processors. However, full advantage was taken of

the vector operations and vector registers of the system. Considerable care was taken in

programming to insure that the multi-precision algorithms were implemented in a style that

would admit vector processing. Most key loops were automatically vectorized by the Cray-2

Fortran compiler. For those few that were not automatically vectorized, compiler directives

were inserted to force vectorization. As a result of this effort, virtually all arithmetic

operations were performed in vector mode, which on the Cray-2 is approximately 20 times

faster than scalar mode. Because of the high level of vectorization that was achieved

using the Fortran compiler, it was not necessary to use assembly language, non-standard

constructs, or library subroutines.

A multi-precision number is represented in these computations as an (n + 2)-long array

of floating-point whole numbers. The first cell contains the sign of the number, either 1,

-1, or 0 (reserved for an exact zero). The second cell of the array contains the exponent

(powers of the radix), and the remaining n cells contain the mantissa. The radix selected

for the multi-precision numbers is 107 . Thus the number 1.23456789 is represented by the

array 1,0, 1, 2345678, 9000000, 0, 0,. •., 0.

A floating-point representation was chosen instead of an integer representation because

the hardware of numerical supercomputers such as the Cray-2 is designed for floating-point

computation. Indeed, the Cray-2 does not even have full-word integer multiply or divide

4

hardware instructions. Such operations are performed by first converting the operands

to floating-point form, using the floating-point unit, and converting the results back to

fixed-point (integer) form. A decimal radix was chosen instead of a binary value because

multiplications and divisions by powers of two are not performed any faster than normal

on the Cray-2 (in vector mode). Since a decimal radix is clearly preferable to a binary

radix for program troubleshooting and for input and output, a decimal radix was chosen.

The value 107 was chosen because it is the largest power of ten tkat will fit in half of the

mantissa of a single word. In this way two of these numbers may be multiplied to obtain

the exact product using ordinary single-precision arithmetic.

Multi-precision addition and subtraction are not computationally expensive compared

to multiplication, division, and square root extraction. Thus simple algorithms suffice to

perform addition and subtraction. The only part of these operations that is not imme-

diately conducive to vector processing is releasing the carries for the final result. This is

because the normal "schoolboy" approach of beginning at the last cell and working forward

is a recursive operation. On a vector supercomputer this is better done by starting at the

beginning and releasing the carry only one cell back for each cell processed. Unfortunately,

it cannot be guaranteed that one application of this process will release all carries (con-

sider the case of two or more consecutive 9999999's, followed by a number exceeding 107).

Thus it is necessary to repeat this operation until all carries have been released (usually

one or two additional times). In the rare cases where three applications of this vectorized

process are not successful in releasing all carries, the author's program resorts to the scalar

"schoolboy" method.

Provided a fast multi-precision multiplication procedure is available, multi-precision

division and square root extraction may be performed economically using Newton's itera-

tion, as follows. Let z0 and Y0 be initial approximations to the reciprocal of a and to the

reciprocal of the square root of a, respectively. Then

Yk+_ --
2

both converge quadratically to the desired values. One additional full-precision multipli-

cation yields the quotient and the square root, respectively. What is especially attractive

about these algorithms is that the first iteration may be performed using ordinary single-

precision arithmetic, and subsequent iterations may be performed using a level of precision

that approximately doubles each time. Thus the total cost of computation is only about

twice the cost of the final iteration, plus the one additional multiplication. As a result,

a multi-precision division costs only about five times as much as a multi-precision mul-

tiplication, and a multi-precision square root costs only about seven times as much as a

multi-precision multiplication.

5. Multi-Precision Multiplication

It cxn be seen from the above that the key component of x high-performance multi-

precision arithmetic system is the multiply operation. For modest levels of precision (fewer

than about 1000 digits), some variation of the usual "schoolboy" method is sufficient,

although care must be taken in the implementation to insure that the operations are

vectorizable. Above this level of precision, however, other more sophisticated techniques

have a significant advantage. The history of the development of high-performance multiply

algorithms will not be reviewed here. The interested reader is referred to Knuth [13]. It will

suffice to note that all of the current state-of-the-art techniques derive from the following

fact of Fourier analysis: Let F(z) denote the discrete Fourier transform of the sequence

z = (Zo, zl, z2,.-. ,zN_l), and let F-t(z) denote the inverse discrete Fourier transform of

N-1

F (x) = Z
3=0

1 N-_

Fk-l(x) = _ _ XjCO -jk
j---O

where w = e-2'_i/Nisa primitiveN-th root of unity.Let C(z, y) denote the convolution of

the sequences x and y:

N-I

j=O

where the subscript k - j is to be interpreted as k - j + N if k - j is negative. Then the

"convolution theorem", whose proof is a straightforward exercise, states that

F[C(x,y)] = F(_)F(y)

or expressed another way

C(x,y) = F-I[F(_)F(y)]

This result is applicable to multi-precision multiplication in the following way. Let

and y be n-long representations of two multi-precision numbers (without the sign or

exponent words). Extend x and y to length 2n by appending n zeroes at the end of each.

Then the multi-precision product z of x and y, except for releasing the carries, can be

written as follows:

6

z o ---- ZOy 0

zl = ZoYl + ZlYo

z_ = Zo92 + ZlYl+z=9o

zn-1 -- zoyn-1 + Zlyn-2 + "" + Zn-19o

Z2r__ 3 _ Xp.._l_n_ 2 + Xn--2_/n-1

Z2rt_ 2 _ Zn_llJn_ 1

.Z2n_ 1 ---'-- 0

It can now be seen that this "multiplication pyramid" is precisely the convolution

of the two sequences z and 9, where N = 2r_. The convolution theorem states that

the multiplication pyramid can be obtained by performing two forward discrete Fourier

transforms, one vector complex multiplication, and one reverse transform, each of length

N = 2n. Once the resulting complex numbers have been rounded to the nearest integer, the

final multi-precision product may be obtained by merely releasing the carries as described

in the section above on addition and subtraction.

The key computational savings here is that the discrete Fourier transform may of course

be economically computed using some variation of the "fast Fourier transform" (FFT)

algorithm. It is most convenient to employ the radix two fast Fourier transform since there

is a wealth of literature on how to efficiently implement this algorithm (see [1], [8], and

[16]). Thus it will be assumed from this point that N = 2" for some integer ra.

One useful "trick" can be employed to further reduce the computational requirement

for complex transforms. Note that the input data vectors z and 9 and the result vector z

are purely real. This fact can be exploited by using a simple procedure ([8], p. 169) for

performing real-to-complex and complex-to-real transforms that obtains the result with

only about half the work otherwise required.

One important item has been omitted from the above discussion. If the radix 107 is

used, then the product of two cells will be in the neighborhood of 1014 , and the sum of

a large number of these products cannot be represented exactly in the 48-bit mantissa of

a Cray-2 floating-point word. In this case the rounding operation at the completion of

the transform will not be able to recover the exact whole number result. As a result, for

the complex transform method to work correctly, it is necessary to alter the above scheme

slightly. The simplest solution is to use the radix l0 s and to divide all input data into

two words with only three digits each. Although this scheme greatly increases the memory

space required, it does permit the complex transform method to be used for multi-precision

computation up to several million digits on the Cray-2.

6. Prime Modulus Transforms

Some variation of the above method has been used in almost all high-performance

multi-precision computer programs, including the program used by Kanada and Tamura.

However, it appears to break down for very high precision computation (beyond about ten

million digits on the Cray-2), due to the round-off error problem mentioned above. The

input data can be further divided into two digits per word or even one digit per word,

but only with a substantial increase in run time and main memory. Since a principal goal

in this computation was to remain totally within the Cray-2 main memory, a somewhat

different method was used.

It can readily be seen that the technique of the previous section, including the usage

of a fast Fourier transform algorithm, can be applied in any number field in which there

exists a primitive N-th root of unity _. This requirement holds for the field of the integers

modulo p, where p is a prime of the form p = kN + 1 ([tl], p. 85). One significant

advantage of using a prime modulus field instead of the field of complex numbers is that

there is no need to worry about round-off error in the results, since all computations are

exact.

However, there are some difficulties in using a prime modulus field for the transform

operations above. The first is to find a prime p of the form kN + 1, where N = 2"_. The

second is to find a primitive N-th root of unity modulo p. As it turns out, it is not too

hard using a computer to find both of these numbers by direct search. Thirdly, one must

compute the multiplicative inverse of N modulo p. This can be done using a variation of the

Euclidean algorithm from elementary number theory. Note that each of these calculations

needs to be performed one time only.

A more troublesome difficulty in using a prime modulus transform is the fact that

the final multiplication pyramid results are only recovered modulo p. If p is greater than

about 1024 then this is not a problem, but the usage of such a large prime would require

quadruple precision arithmetic operations to be performed in the inner loop of the fast

Fourier transform, which would very greatly increase the run time. A simpler and faster

approach to the problem is to use two primes, pl and P2, each slightly greater than 10lz, and

to perform the transform algorithm above using each prime. Then the Chinese remainder

theorem may be applied to the results modulo Pl and p2 to obtain the results modulo the

product P_P2. Since pip2 is greater than 1024, these results will be the exact multiplication

pyramid numbers. Unfortunately, double precision arithmetic must still be performed in

the fast Fourier transform and in the Chinese remainder theorem calculation. However,

the whole number format of the input data simplifies these operations, and it is possible

to program them in a vectorizable fashion.

Borodin and Munro ({3], p. 90) have suggested using three transforms with three

primes Pl,P_, and P3, each of which is just smaller than half of the mantissa, and using

the Chinese remainder theorem to recover the results modulo PlP2P3. In this way double

precision operations are completely avoided in the inner loop of the FFT. This scheme runs

quite fast, but unfortunately the largest transform that can be performed on the Cray-2

using this system is N = 219, which corresponds to a maximum precision of about three

million digits.

Readers interested in studying about prime modulus number fields, the Euclidean al-

gorithm, or the Chinese remainder theorem are referred to any elementary text on number

theory, such as [10] or [11]. Knuth [13] and Borodin [3] also provide excellent information

on using these tools for computation.

7. Computational Results

The author has implemented all three of the above techniques for multi-precision multi-

plication on the Cray-2. By employing special high-performance techniques [1], the complex

transform can be made to run the fastest, about four times faster than the two-prime trans-

form method. However, the memory requirement of the two-prime scheme is significantly

less than either the three-prime or the complex scheme, and since the two-prime scheme

permits very high-precision computation, it was selected for the computations of _r.

One of the author's computations used twelve iterations of Borweins' quartic algorithm

for 1/_r, followed by a reciprocal operation, to yield 29,360,128 digits of a'. In this com-

putation approximately 12 trillion arithmetic operations were performed. The run took

28 hours of processing time on one of the four Cray-2 central processing units and used

138 million words of main memory. It was started on January 7, 1986 and completed

January 9, 1986. The program was not running this entire time - the system was taken

down for service several times, and the run was frequently interrupted by other programs.

Restarting the computation after a system down was a simple matter since the two key

multi-precision number arrays were saved on disk after the completion of each iteration.

This computation was checked using 24 iterations of Borweins' quadratically convergent

algorithm for 7r. This run took 40 hours processing time and 147 million words of main

memory. A comparison of these output results with the first run found no discrepancies

except for the last 24 digits, a normal truncation error. Thus it can be safely assumed that

at least 29,360,000 digits of the final result are correct.

It was discovered after both computations were complete that one loop in the Chinese

remainder theorem computation was inadvertently performed in scalar mode instead of

vector mode. As a result, both of these calculations used about 25% more run time than

would otherwise have been required. This error, however, did not affect the validity of the

computed decimal expansions.

8. Statistical Analysis of _"

Probably the most significant mathematical motivation for the computation of _r, both

historically and in modern times, has been to investigate the question of the randomness

of its decimal expansion. Before Lambert proved in 1766 that lr is irrational, there was

9

Digit

0 2935072

1 2936516

2 2936843

3 2935205

4 2938787

5 2936197

6 2935504

7 2934083

8 2935698

9 2936095

Count Deviation Z-score

-928

516

843

-795

2787

197

-496

-1917

-302

95

-0.5709

0.3174

0.5186

-0.4891

1.7145

0.1212

-0.3051

-1.1793

-0.1858

0.0584

Table 1: Single Digit Statistics

great interest in checking whether or not its decimal expansion eventually repeats, thus

disclosing that a" is rational. Since that time there has been a continuing interest in

the still unanswered question of whether the expansion is statistically random. It is of

course strongly suspected that the decimal expansion of a', if computed to sufficiently high

precision, will pass any reasonable statistical test for randomness. The most frequently

mentioned conjecture along this line is that any sequence of n digits occurs with a limiting

frequency of 10 -n.

With 29,360,000 digits, the frequencies of n-long strings may be studied for randomness

for n as high as six. Beyond that level the expected number of any one string is too low for

statistical tests to be meaningful. The results of tabulated frequencies for one and two digit

strings are listed in Tables 1 and 2. In the first table the z-score numbers are computed as

the deviation from the mean divided by the standard deviation, and thus these statistics

should be normally distributed with mean zero and variance one.

The most appropriate statistical procedure for testing the hypothesis that the empirical

frequencies of n-long strings of digits are random is the X 2 test. The X _ statistic of the k

observations XI,X2,"" ,X_ is defined as

- 2

i=l

where Ei is the expected value of the random variable Xi. In this case k = 10 '_ and

Ei = 10-nd for all i, where d = 29,360,000 denotes the number of digits. The mean of the

X 2 statistic in this case is k - 1 and its standard deviation is v/_k - 1). Its distribution is

nearly normal for large k. The results of the X z analysis are shown in Table 3.

Another test that is frequently performed on long pseudorandom sequences is an analy-

sis to check whether the number of n-long repeats for various n is within statistical bounds

10

O0 293062
05 294189
lO 294503
15 293158
20 293952
25 293721
30 293718
35 29349O
40 294622
45 293998
50 292736
55 294194
60 293842
65 293544
70 292650
75 293199
80 292517
85 293600
90 293470
95 293104

Ol 293970

06 292688

iI 293409

16 293799

21 293226

26 293655

31 293542

36 293484

41 294793

46 294418

51 294272

56 293260

61 293105

66 293123

71 294304

76 293597

81 292986

86 293786

91 292908

96 293694

02 293533

07 292707

12 293591

17 293020

22 293844

27 293969

32 293272

37 292694

42 293863

47 293616

52 293614

57 294152

62 294187

67 293307

72 293497

77 292745

82 293637

87 293971

92 293806

97 293902

03 292893

08 294260

13 294285

18 293262

23 293382

28 293320

33 293422

38 294152

43 293041

48 293296

53 293215

58 293137

63 293809

68 293602

73 293761

78 293223

83 294475

88 293434

93 292922

98 294012

04 294459

09 293311

14 294020

19 293469

24 293869

29 293905

34 293178

39 294253

44 293519

49 293621

54 293569

59 294048

64 293463

69 293522

74 293960

79 293147

84 294267

89 293025

94 294483

99 293794

Table 2: Two Digit Frequency Counts

Length X_ value Z-score

4.869696

84.52604

983.9108

10147.258

100257.92

I000827.7

-0.9735

-1.0286

-0.3376

1.0484

0.5790

0.5860

Table 3: Multiple Digit y_ Statistics

ll

Length

10

11

12

13

14

15

Count

42945

4385

447

48

6

1

Expected Z-score

43100. -0.677

4310. 1.033

431. 0.697

43.1 0.675

4.31 O.736

0.43 0.784

Table 4: Long Repeat Statistics

of randomness. An n-long repeat is said to occur if the n-long digit sequence beginning

at two different positions is the same. The mean M and the variance V of the number of

n-long repeats in d digits are (to an excellent approximation)

10-nd 2
M -

2
11-lO-"d 2

V -
18

Tabulation of repeats in the expansion of a" was performed by packing the string begin-

ning at each position into a single Cray-2 word, sorting the resulting array, and counting

equal contiguous entries in the sorted list. The results of this analysis are shown in Table

4.

A third test frequently performed as a test for randomness is the runs test. This tests

compares the observed frequency of long runs of a single digit with the number of such

occurrences that would be expected at random. The mean and variance of this statistic

are the same as the formulas for repeats, except that d 2 is replaced by 2d. Table 5 lists the

observed frequencies of runs for the calculated expaasion of a'.

The frequencies of long runs are all within acceptable limits of randomness. The only

phenomenon of any note in table 5 is the occurrence of a 9-long run of sevens. However,

there is a 29% chance that a 9-long run of some digit would occur in 29,360,000 digits, so

this instance by itself is not remarkable.

9. Conclusion

The statistical analyses that have been performed on the expansion of _" to 29,360,000

decimal places have not disclosed any irregularity. The observed frequencies of n-long

strings of digits for n up to 6 are entirely unremarkable. The numbers of long repeating

strings and single-digit runs are completely acceptable. Thus based on these tests the

decimal expansion of _r appears to be completely random.

12

Digit
o
1
2
3
4
5
6
7
8
9

Lengthof
5 6 7

308 29 3

281 21 1

272 23 O

266 26 5

296 40 6

292 30 4 0

316 33 3 0

315 37 6 2

295 36 3 0

306 40 7 0

Run

8[9
0 0

0 0

0 0

0 0

1 0

0

0

1

0

0

Table 5: Single-Digit Run Counts

REFERENCES

i. Bailey,D. H., "A High-Performance Fast FourierTransform Algorithm forthe Cray-

2", to appear in Journal of Supercomputing, 1987.

2. Beckmann, P., A History of Pi, Golem Press,

3. Borodin, A., Munro, I., The Computational

Problems, American Elsevier Publishing Co.,

Boulder, CO, 1971.

Complexity of Algebraic and Numeric

New York, 1975.

4. Borwein, J. M., and Borwein, P. B., "The Arithmetic-Geometric Mean and Fast

Computation of Elementary Functions", SIAM Review, 26 (1984), pp. 351-366.

5. Borwein, J. M., and Borwein, P. B., "More Quadratically Converging Algorithms for

Pi", Mathematics of Computation, 46 (1986), pp. 247-253.

6. Borwein, J. M., and Borwein, P. B., Pi and the AGM - A Study in Analytic Number

Theory and Computational Complexity, John Wiley, New York, 1987.

7. Brent, R. P., "Fast Multiple-Precislon Evaluation of Elementary Functions", Journal

of tile Association of Computing Machinery, 23 (1976), pp. 242-251.

8. Brigham, E. O., Tile Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N J,

1974.

9. Gosper, W., private communication.

10. Grosswald, Emil, Topics from the Theory of Numbers, Macmillan, NY, 1966.

13

11. Hardy, G. H., and Wright, E., M., An Introduction to the Theory of Numbers, 5th

edition, Oxford University Press, London, 1984.

12. Kanada, Y., and Tamura, Y., "Calculation of lr to 10,013,395 Decimal Places Based

on the Gauss-Legendre Algorithm and Gauss Arctangent Relation", Computer Cen-

tre, University of Tokyo, 1983.

13. Knuth, D., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,

Addison-Wesley, Reading, MA, 1981.

14. Salamin, E., "Computation of 7r Using Arithmetic-Geometric Mean", Mathematics

of Computation, 30 (1976), pp. 565-570.

15. Shanks, D., and Wrench, J. W., "Calculation of _r to 100,000 Decimals", Mathematics

o/" Computation, 16 (1962), pp. 76-99.

16. Swarztrauber, P. N., "FFT Algorithms for Vector Computers", Parallel Computing,

1 (1984), pp. 45-64.

14

APPENDIX

Selected Output Listing

Inititl 1000 di6itJ:

3.

_4_926_3_89_932384626433_3279_2884_9_6939937_82_974944_923_8164_62_62_8998628_3482_342_7_679

82148_86_32823_647_938446_9_6_8223172_3_94_8128481_1_4_2841_27_938_211_696446229489_493_38_96

442881_97_66_93344612847_64823378_78316_2712_19_914_648__692346_348_1_4_43266482_33936_726_249141273

724_87__6__631__88174881_2_92_9628292_4_9171_3643_7892_9_36__1133__3__4882_466_2138414_9_1941_116_94

33_S727_3e_7_9_9_9_3_921_61173_1932611793___118_4__744623799e2T49_673_188_7S2724891227938183_1194912

98336733e244___6_43_86_2139494e39_22473719_7_21798__9437_2_7__392___762931767_2384_748184676694__132

____6812714_263_6_82778_7713427877896_9173_3717872146844_9_12249_343_146_49_8_371___7922796892_8923_

42_199_6112129_219__864_344181_9813e297747713_99___187_7211349999998372978_499_1__9731_32816_96318_9

__244_94__3469_83_2642_223_82_334468__3_261931188171_1___31378387_2886_8__332_838142_6_71776691473_3

_982_349_42_7__4687311_9_628638823_3787_937_19_77818_7_8__321712268___13___9278_661119_9_921642__989

Digits 4,999,001 to S,O00,O¢Ot

4948_7_4784__81__182T319316324884128_44887222969s6798___1_4648__78_48_736_3_2279_2_36997918_848_7_3_

649_2221__A_27_8_7_833__3_212_696848_1817137_1_32997__173842_16_34_4_2_3_1_____3_1_4_342162492_27179

6682492e4_893_96_18264__2_9231_2266_7__4_6414__3472_341__491377_421___7644_28__8_9_3_248393621_93_31

_2288_9_2384868TT92314s24_84163727118_9_3__889__4_68843766781431498914299893621278_4_2__14314_439_48

499388_1__633___9_1311673_89113276_77788136469_7_847_3686341119_323_6388___748_8_212_6828422_78_2_24

_3_869937_32__692_9396_818_8741418123_4841_32_4_492_234989__2732447_93_2_32379479_T764447_239844__14

_73_44_321_96898_2449619_714343396489__93_9___2338498188_274684492483_314_342____6421_3__286868_8_48

274_33186_992_73473_64273__36364__28_6_222189663__11429182_343199_41632_3372368798_S34_11112_3___262

391_4_8263997_934__8146672_2138_1__913_4721___242818988626_331694693319_167_2962_93_67_2291_9_71_999

_984_1792_8__9262___848638_3881128_944___488_21_6_488__8__191846T_23__4217617_3____8172132_764_19_1_

Digits 9,999,001 to 10,000,000:

___97818243_16728227_49g1_72_4__2867_79_7__446_33_1271_2_297952__8_61772_334_06894988__64247_326923_

1_39982_9__39_16e27_2243381844248_8__939_2936_2_82_363$6_8_8417E48__3_7448186__28924_1882_6447__328_

79_29_4_6_2929_83_8348_48393_833346_1_19_89_2_6_14_369_7314_9_946_82346_47872_289_299742_4

_2_27_3$23_9232933_77_17942386_22_9_324_694_2748_6_41288_3_3_924s248_3494_8273_932443887273_9397

4_634_9_469_1924_39_1_1341_434339983_18746_97233692_3_22_7914_24_42444_132_3129643963912_96_78_

1_344_5119912_42_8_97374_7446_4_89974214S731_42313644_486_19378_63S266_3744_S_882386138937_443

973_168129_831_679116188842222_1_41477322612331396186_6_8_37311_348_9266_93394_4384163__32614344928_

5_82_131_7_737727739821_1_22286_9997_62432_872_39339344_9_2_916622729_S4934938271782_126669_21149

4719231138_933822311224_99588372246332_122232337_9689_269_253662639412_7_1_3_732_864987_7_2_7149617

76_1_492s798_7_92_4_32468944687427_2_463979_6_326_3194_6_9994697873338_63_71948_73_3489_897

Digits 14,999,001 to 16,000,000:

7_161912_82729_344371232797492__311_1192_2439_69__4146673__6919481_163837226_7392_1_1__77_17_1__9`r4_

__6228__72_4486_22_94__93_4_4488_39_829811_8_124923__26_8837_966783621_497_3412_39_83_84922711342__3

949_399__9362_4413314_173_133_8__4817231_88747322_668621392_1938S4_1_224947__7_4949471_839_623__278_

_7_338__82449___1_844623__4724_7_1216_9_27_43862_283__99923_222328486_934_66262929748436_2773__12_3_

14434_936_98742_976_41§$_4412_97984133998_1_934_843_39347_6___243238__16_4327319_8___1264__671_713_3

77_7_6214_7_9318131_1162879_971_179_1_2818_9_93_4481_8_447_73641221661_3242_982631662_7

4173__1822_48_71_488224616_6389_344_469342_81_3238399_32_4_2988_746342496$83_868369474861942_7_33_4_

36331223_38222392494___27_8_6378_33___213_44686_93_29868217149_28_8_8_949418676_32291__73398_7684___

77_761_178___7277_9988__2737_81438_794117668763_997_814499149_9_314_94_98_2_96_33_377989988228138_79

_39_46_8_7618_7_488_4339_84_19_41_927_26_34467964_2_263473393286_74979323931_31411727756698_3

Digits 19,999,001 to 20,000,000:

2466242_2_998594888_8_44_687_1975764389516_7697867s8_2652844s12412624999551s_446_281646_92893_6

37396198_96248_2711___2469686381679_79_9892616_2141998_14_3927165461_87146642_799_2787__23943144_69_

15

24S 2482788300143S83049929S 1SS 66S 1943780¢24S22316130349846016S13S 282 $3410971:8187S080414$718_219S0

9816988969940t $40s76 |e0430489s4"r131781464794920sse9961179989"/'1293_7_s31s_s_38s3s81sg3SS_l_8

e=00848622"ro298esee82308se391322oelss920s243349223418984_?N210s2e_e22_287ee49s1|_N2024 l_Se

242"r 5201300462306788083890012"rs40081147s 14969136464242229763044348160s110791844_4_2_2_g212978s0

2788s 23s888942133"r21123400642"r201"r3"r s|4481"r263248s38990s48s693982923700908893"r 143s44264882420"r842|49

28097400"r 27949203s6326388439s3101"r6643s3s9026146347630723302999904s4962_19262921314324891 _8031 _84

2409134088861860323"re704408"rT04719307996s717842s684902689744s7016817_810789_118970643044s720474936

819Q38s78160207934661666449313sgo'r300s891342768"rssgs07244789s2328081911162910s S_l M_9_M34S27644

DLELto 24,999,001 to 2S,000,0QQ:

_4_2_376_S_7884_1_2_8_r2_3S83S1_2S_93238112e8_413224S2T'r?46296_11387113_1768322443714934_11_S_71_3

91_991_83_22_88_388_484?_379998239_e_41879S42473S_36_3S8S_S213_4S168727__8_9e7894__SS8S34_92284428_3

24948936__13422_79_S9e8_4_96?_9211__r19_838___S82_S3_81__481S19_224_8S___2148_.74123SS1_23S29_8_81__92

?4189214723_862_36_212171399_138S141_7_793749_2S32_43S_78S9972884134839114349S221986494832133_49_?4

6_14_43_1212_43112S9S?394?3_1142S31184___914224_8_72_1221_3__3318_2S__17932?1_81____92499_9_3813?333

_9e_2S?_213348431S489S3618884362_873_2748886T4?81183?39847393137S_?_.r1492_9_114_221961S798_47_6?S14

3_98133_283_419_9?_9_9_144_472922_212937_24_47_7_9_4744S_1_8_2?2319698_3S17_24941726_18_383_7

327e2891?418_38221492_8_3922_37_3829_?3_941T39_39_?649_8886_8491e818e491743.r_r_2?82872e191_923

924?_738836_872266493_962438329_8614_437_22828828173_9_312_42_743?_e119_8_12973_3_342_37?.93_2761

38_3?__?9_9491__31_82381_8922e722417_329__4_2_3446_78e411_924_9?8__94424$_1128_22__4_7.r483_191__4322

DLgits 29,369,001 to 29,360,000:

34_928417889_229_43368473881977_98_3_746219846_9_2_347_`r.r_172988_433_243_26184_9_r2_919_2S91_7

11?47_294_?3_3_74_S23S_2782978?_2_S44_?S4_S_`t39989S_71S3_981_2189_1131_S_419_973_9?2_29_6_6?

1889_11_1382_842S8998_21_44_3_S?_3_937_2898823_7_141234?48_72_`ie93S_3_73_./._r738_64_43?3_8_?329184_

621_849_33_9748276894112_8_7_2229_/._2323_6239_6833_263114891e_e388391_7_19?3_9t4991_19284_8941_1_9_

3961226_3293_119_97872S_7642_46289S37_18_9_`r4494_3_3_92921314127_4_888_1_17_422_84_84744149319_18

_?6_82_?21.r.r28361449_r_r9?_76_228_4_1K)47197_9_2_4?_68_36_a422_89_17?3`r13_11$9_4_2433_16212

37_9374_?_2_7_33898894_12337_693_1_S72_9_3_27814_91_1913_3_7_746432_18_38_4_T13_997$_?_4S_9e83SS4

__9___7_?_2849747S12_4_78644113_84S32_32314_4__419172_33_48996479_2_3287817189338?317819324912382342

18_4_2717e3T23_22_@1?2_1_34_3_8_849S_8_81_1124899_44_84872_e93_219_T79.r94342949464_2_841993sK)_9_3_

342_98_232?7623931436_2_9_7_832_2_37_2_924?768147_49_971424493_?_41433_9872_9_78_e_43222?28882_3

16

